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Abstract

Using data from the Longitudinal Study of American Youth (LSAY), the present study
examined whether early acceleration of students into formal algebra at the beginning of middle
school promoted evident growth in different mathematical areas (basic skills, algebra, geom-
etry, and quantitative literacy) and stable growth across these mathematical areas. Results of
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formal algebra grew faster than not only low achieving students who were not accelerated but
also high achieving students who were not accelerated. The rates of growth of accelerated low
achieving students were even comparable to those of accelerated high achieving students. All
low achieving students showed the same potential to take advantage of early acceleration
regardless of their individual, family, and school characteristics. Early acceleration also pro-
moted stability of growth across mathematical areas, and this stability was not dependent
on student and school characteristics.
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1. Introduction

The present study examined whether early acceleration of students in mathematics
results in evident growth in various mathematical areas (basic skills, algebra, geom-
etry, and quantitative literacy) and balanced growth across these mathematical areas,
using data from the Longitudinal Study of American Youth (LSAY), a six-year
(Grades 7–12) panel study of mathematics (and science) education of public middle
and high school students (Miller, Kimmel, Hoffer, & Nelson, 2000). In the literature,
early acceleration is usually defined as the educational practice to instruct students
with advanced learning materials that are reserved for students at higher grade levels.
In the present study, early acceleration is specifically defined as early access to formal
algebra (Algebra I) at the beginning of middle school (Grades 7 and 8).

The present study attempted to determine how much growth in achievement
accelerated students can demonstrate in each of the four mathematical areas in rela-
tion to their initial mathematics achievement at the beginning of middle school and
examine whether accelerated students who have a faster rate of growth in achieve-
ment in one mathematical area also have a faster rate of growth in achievement in
other mathematical areas. Furthermore, the present study attempted to examine
the impacts of student and school characteristics on growth in each of the four math-
ematical areas and stability of growth across the four mathematical areas among
accelerated students compared with non-accelerated students.

Such a study is important in that researchers who study mathematics coursework
have increasingly realized the importance of timing in taking mathematics courses.
Spring (1989) describes schools as a ‘‘great sorting machine’’ in which selecting
one mathematics course rather than another at a particular time during a student�s
academic career may function as a critical gateway in the successful learning of
mathematics. Formal algebra is a required course for all advanced mathematics
and sciences courses, and as such it is the first major gateway that determines student
subsequent high school mathematics and science experiences (Usiskin, 1995; Wagner
& Kieran, 1989). Smith (1996) concluded that ‘‘early access to algebra has an effect
beyond simple increased knowledge measures and, in fact, may �socialize� a student
into taking more mathematics, regulating access both to advanced coursework and
increased achievement in high school’’ (p. 141).

Why is formal algebra so important to the learning of mathematics? Kieran (1992)
proposed a historical-epistemological framework to understand the role of formal
algebra in mathematics. Mathematics has long been characterized as abstract, repre-
senting a move ‘‘from ordinary language descriptions of problem situations and their
solutions to symbolic representations and procedures’’ (Kieran, 1992, p. 390), and
she believes that formal algebra most appropriately highlights the gradual loss in
the meaning of words during such a move. Algebraic symbolism is then the essential
building block for mathematics. Boero, Douek, and Ferrari (2002) as well as Kleiner
(1989) employed such examples as mathematical computing, mathematical function,
and analytical geometry to demonstrate that the creation of a symbolic (formal)
algebra is essential to the development of other mathematical concepts and
procedures.
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Despite the recognition of the importance of formal algebra, when the most
appropriate time is to encourage or even push students to consider taking formal
algebra is a quite controversial policy and practice issue. Some researchers believe
that it is beneficial and important for students to take formal algebra as early as
Grade 8 (e.g., Usiskin, 1987). The main reason given by this group of researchers
for early access to formal algebra is that it opens doors to all students for increased
learning opportunities and attainments in mathematics (see Oakes, 1990; Smith,
1996; Useem, 1993). Mills, Ablard, and Gustin (1994) argued that traditionally high-
er-level curriculum can be instructed at a much earlier age because many students
reach the Piagetian ‘‘formal operational stage’’ much sooner than normally expected.

Other researchers believe that it is ineffective and even harmful for students to
take formal algebra at the beginning of middle school (e.g., Frevost, 1985). The main
reason given by this group of researchers against early access to formal algebra is
that it frustrates and alienates students, even mathematically talented students, for
further studies in mathematics (see Karper & Melnick, 1993; Liu & Liu, 1997).
Advocating curricular enrichment as an alternative, these researchers fear that early
acceleration of students into formal algebra leads to array of cognitive and affective
difficulties among students and burns them out eventually.

To provide empirical evidence to facilitate this debate, the present study com-
pared students who were accelerated and not accelerated into formal algebra, with
a focus on rates of growth in the four mathematical areas and stability of growth
across the four mathematical areas between these two groups of students. The ana-
lytical logic of the present study is as follows.

(a) If students who are accelerated into formal algebra at the beginning of middle
school grow faster (slower) (across middle and high school grades) in achievement
in a mathematical area than students who are not accelerated, then early acceler-
ation into formal algebra promotes (hampers) growth in the mathematical area.
(b) If students who are accelerated into formal algebra at the beginning of middle
school demonstrate a greater (lesser) degree of stability in growth (across middle
and high school grades) among different mathematical areas than students who
are not accelerated, then early acceleration into formal algebra promotes (ham-
pers) stability of growth across different mathematical areas.

This analytical logic guided the examination of the following research questions in
the present study:

1. How much growth does early acceleration of students into formal algebra pro-
mote in each of the four mathematical areas?

2. Do student and school characteristics moderate the effects of early acceleration
into formal algebra in each of the four mathematical areas?

3. Does early acceleration into formal algebra promote the stability of growth in
achievement across the four mathematical areas?

4. Do student and school characteristics moderate the stability of growth in achieve-
ment across the four mathematical areas?
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The present study examined these issues of early acceleration of students in math-
ematics in relationship to their initial mathematics achievement at the beginning of
middle school. This effort underscores the assumption that early acceleration into
formal algebra may have different impacts on students of differing academic
background.

Results of the present study therefore are able to provide useful empirical evidence
as to the effectiveness (or ineffectiveness) of early acceleration into formal algebra
from a longitudinal perspective (across the entire middle and high school). In this
sense, the present study responds to the major limitation of research in early accel-
eration of students in mathematics as Kolitch and Brody (1992) have noted that
‘‘studies are lacking that would provide a comprehensive picture of the mathematics
preparation of [accelerated] talented students throughout the secondary school
years’’ (p. 79). While this comprehensive picture is unlikely to be painted in a single
study, the present study is able to show whether early acceleration of students into
formal algebra promotes significant academic growth across different mathematical
areas and creates balanced academic development across different mathematical
areas throughout the entire secondary school years. Findings of the present study
are able to assist politicians, administrators, and researchers to assess the merits
and deficiencies of the policy and practice of early acceleration.
2. Method

2.1. Data

The Longitudinal Study of American Youth (LSAY) contained a national prob-
ability sample of 51 pairs of middle and high schools drawn through a stratified
sampling framework from a national population of middle and high schools in
12 sampling strata defined on the basis of geographic region and type of community
(Miller et al., 2000). About 60 seventh graders were then randomly selected from
each sampled school and these seventh graders were studied for six years (from
Grades 7 to 12). The sample contained 3116 students in the 7th grade, 2798
in the 8th grade, 2748 in the 9th grade, 2583 in the 10th grade, 2409 in the 11th
grade, and 2215 in the 12th grade. Student emigration and dropout were the major
reason for data attrition. Students took a mathematics (and science) achievement
test and completed a student questionnaire each year during the six-year period
of study.

2.2. Measures

The LSAY data are particularly well suited to the purposes of the present study
because it is the most comprehensive longitudinal database among all existing na-
tional education databases, with coverage over the entire secondary school grades
from 7 to 12 and a focus on mathematics (and science) education. Outcome measures
(dependent variables) were mathematics achievement in four mathematical areas or
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subscales as mentioned earlier (basic skills, algebra, geometry, and quantitative liter-
acy). The basic skills subscale measured students� ability to solve problems associated
with number concepts and operations. The algebra subscale measured students� abil-
ity to solve problems typical of a first algebra course in high school. The geometry
subscale measured students� ability to solve problems in geometry and measurement.
The quantitative literacy subscale measured students� ability to solve problems asso-
ciated with percentage, probability, data analysis, and graph reading.

Each subscale was composed of items directly adopted from the National Assess-
ment of Educational Progress (NAEP). The same subscale was used across the per-
iod of six years (Grades 7 to 12). Scores were calibrated (and thus became
comparable) across this period, using item response theory (IRT) (Miller et al.,
2000). Specifically, the LSAY staff used a three-parameter IRT model to adjust
scores for item difficulty, reliability, and guessing. IRT scores have several advanta-
ges over (raw) total scores (see, for example, Crocker & Algina, 1986). One advan-
tage particularly relevant to the present study is that IRT scores represent a refined
interval scale of measurement very important to examine growth or change over
time. Scores in Grade 7 were scaled to a metric with a mean of 50 and a standard
deviation of 10, and students were scored on the same metric in subsequent years
(Miller et al., 2000). Based on this procedure, a measure of growth in each of the four
mathematical subscales could be estimated, using a growth model approach.

Status of early acceleration in mathematics and initial mathematics achievement
at the beginning of middle school were the key independent variables. Based on de-
tailed coursework information on each student in the LSAY, one variable was cre-
ated to denote status of early acceleration of students in mathematics. Students who
took Algebra I in either Grade 7 or Grade 8 were defined as accelerated in mathe-
matics. These students had early access to formal algebra. Meanwhile, students
who took Algebra I in neither Grade 7 nor Grade 8 were defined as not accelerated
in mathematics. These students did not have early access to formal algebra.

Besides the four separate subscales in the mathematics test (discussed above), the
LSAY staff also combined them into an overall measure of mathematics achievement
in each year. Similarly, scores were scaled to a metric with a mean of 50 and a stan-
dard deviation of 10, with IRT procedures. Mathematics achievement in Grade 7
was used in the present study to represent students� initial mathematics achievement
at the beginning of middle school. Cronbach�s a for the whole mathematics achieve-
ment test was 0.86 in Grade 7.

Other independent variables came from the student questionnaire used in the
LSAY and described student characteristics, including gender, age, parent socioeco-
nomic status (SES), race-ethnicity, family structure (number of parents), family size
(number of siblings), and language spoken at home. Gender was coded into one
dichotomous variable, with male students as the base line effect against which female
students were compared. Age was coded as a continuous variable, with one month as
the measurement unit. Parent SES was a combined index of parent-reported educa-
tion and occupation as well as student-reported household possessions and was
scaled into two standardized continuous variables denoting father�s SES and
mother�s SES.
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Race-ethnicity was coded into four dichotomous variables, with White students as
the base line effect against which Hispanic, Black, Asian, and Native American stu-
dents were compared. Family structure was coded into one dichotomous variable,
with students from both-parent households as the base line effect against which stu-
dents from single-parent households were compared. Family size was coded as a con-
tinuous variable, with one person as the measurement unit. Language spoken at
home was coded into one dichotomous variable, with students speaking English at
home as the base line effect against which students speaking other languages at home
were compared. For the purpose of statistical analysis, these variables descriptive of
student characteristics were either centered (in the cases of all dichotomous variables
as well as age and family size) or standardized (in the cases of father�s SES and
mother�s SES).

School-level variables came from the student, teacher, and principal question-
naires used in the LSAY and described school contextual and climatic characteris-
tics. School-level variables were selected in the present study following the
theoretical scheme on school effectiveness. Teddlie and Reynolds (2000) have de-
scribed how schools influence learning outcomes of students through differing school
context and climate. Some school-level variables were aggregated measures to the
school level from student and teacher questionnaires.

School contextual variables included school size, school location (two dummy
variables denoting suburban and rural with urban as the base-line effect), school
socioeconomic composition (measured through the percentage of free-lunch stu-
dents), school racial-ethnic composition (measured through the percentage of minor-
ity students), grade span, student–teacher ratio, teacher education level, and teacher
experience in mathematics.

School climatic variables (with Cronbach�s a reported in parentheses in case of
composite variables) included computer-student ratio in mathematics, academic
expectation (0.69), disciplinary climate (0.77), parental involvement, principal lead-
ership (0.86), teacher autonomy (0.79), teacher commitment (0.58), staff cooperation
(0.51), mathematics homework, general support for mathematics (0.77), and extra-
curricular activities (0.70). The use of partial scales of these composite variables
was explored as a way to improve reliability. Eventually, full scales were maintained
because partial scales showed trivial or no improvement in reliability. Note that ‘‘low
reliability does not necessarily mean lack of precision’’ in measurement (Rogosa,
Brandt, & Zimowski, 1982, p. 744). It is possible to encounter low reliability when
school-level responses are not reasonably distinguishable among schools (similar sit-
uations are not uncommon when measuring social phenomena). The appendix con-
tains descriptions of these school climatic variables. For the purpose of statistical
analysis, all school-level variables were centered.

2.3. Stability measures

Because a measure of growth (from Grades 7 to 12) could be estimated in each of
the four mathematical subscales, when these measures of growth across the four
mathematical subscales were kept together in a single statistical equation (a multi-
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variate framework), correlations of these measures of growth could be estimated as
measures of stability of growth across the four mathematical subscales (which were
used to compare against the analytical logic of research as discussed earlier).

A correlation as a measure of stability simply indicates that growth is in the same
direction across two mathematical subscales. For example, a perfect positive corre-
lation happens when the rank of growth for each student is exactly the same between
two subscales, whereas a perfect negative correlation happens when the rank of
growth for each student is totally reversed between two subscales. In this sense, sta-
bility in the present study did not necessarily mean the exact amount of growth but
rather the exact rank of growth.

Naturally, students are not expected to grow at the same rate across mathematical
areas due to different levels of abstraction and difficulty associated with different
mathematical areas. However, the present study is indeed in a position to examine
whether early acceleration of students in mathematics can produce a similar amount
of addition (either positive or negative) to growth across the four mathematical
areas. Such information can be captured in standardized regression coefficients asso-
ciated with status of early acceleration, initial mathematics achievement, and their
interaction (assuming that mathematics achievement at the beginning of middle
school is critically important to early acceleration). Therefore, the present study
adopted two measures of stability: correlation coefficients that measure the consis-
tency in position in growth and (standardized) regression coefficients that measure
the amount of addition to growth due to early acceleration of students in
mathematics.

2.4. Statistical analysis

The kind of analysis as discussed above could be performed within the framework
of hierarchical linear modeling (HLM) (Raudenbush & Bryk, 2002). Similar model-
ing ideas have been presented in, for example, Raudenbush, Rowan, and Kang
(1991). Therefore, HLM models were employed to quantify the amount of growth
(from Grades 7 to 12) in each of the four mathematical areas and examine the degree
of stability of growth in achievement across the four mathematical areas. Specifi-
cally, these models investigated whether early acceleration of students into formal
algebra promoted growth and stability of growth across different mathematical
areas.

A four-level HLM model was developed that represents a multivariate, multilevel
analytic approach. The level-one model integrates scores from the four mathematical
areas into a single equation with four dichotomous variables denoting the four math-
ematical subscales:

Y ijkl ¼ w1jklX 1ijkl þ w2jklX 2ijkl þ w3jklX 3ijkl þ w4jklX 4ijkl;

X sijkl ¼
1 s ¼ i;

0 s 6¼ i;

�
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where Yijkl is the subscale i score in grade level j for student k in school l. This
model without intercept and error term is a measurement device to combine scores
from the four subscales into one equation so that variance and covariance compo-
nents in growth among the four subscales can be computed at the student and
school levels. Note that covariance components in growth cannot be obtained with
the univariate approach of analysis (four separate HLM models). As a measure-
ment device, this model generates no meaningful statistics but constitutes one level
to create a multivariate environment in which hierarchical (3-level) data with re-
peated measures nested within students nested within schools can be analyzed.
With no error term in the model, Yijkl is not the predicted value as normally as-
sumed in regression but the actual score (subscale i score in grade level j for stu-
dent k in school l).

The level-two model estimates rates of growth across the four mathematical sub-
scales. It includes four sets of linear regression equations that model students� scores
on their grade levels in each subscale.

w1jkl ¼ b10kl þ b11klT jkl þ e1jkl;

w2jkl ¼ b20kl þ b21klT jkl þ e2jkl;

w3jkl ¼ b30kl þ b31klT jkl þ e3jkl;

w4jkl ¼ b40kl þ b41klT jkl þ e4jkl;

where w1jkl to w4jkl are subscale scores (basic skills, algebra, geometry, and quantita-
tive literacy) in grade level j for student k in school l. Tjkl is the grade level (j) in which
student k in school l is, and e1jkl to e4jkl are error terms. Parameters b11kl to b41kl rep-
resent rates of growth in the four subscales for student k in school l.

The level-three model examines the effects of student characteristics on rates of
growth in the four mathematical subscales. It contains four sets of regression equa-
tions modeling the rates of growth, respectively, with student characteristics.

b11kl ¼ c110l þ
X

c11plX pkl þ u11kl;

b21kl ¼ c210l þ
X

c21plX pkl þ u21kl;

b31kl ¼ c310l þ
X

c31plX pkl þ u31kl;

b41kl ¼ c410l þ
X

c41plX pkl þ u41kl:

In these equations, students� rates of growth are represented as school average rates
of growth (c110l to c410l), error terms unique across students (u11kl to u41kl), and con-
tributions (more precisely, adjustment, in the present case) of student characteristics.
This level-three model allows rates of growth and stability of growth to be estimated
unconditionally (without student characteristics) and conditionally (with adjustment
for student characteristics).

Finally, the level-four model examines the effects of school characteristics on
school average rates of growth in the four mathematical subscales. Statistically, it
contains four regression equations modeling school average rates of growth, respec-
tively, with school characteristics.
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c110l ¼ -1100 þ
X

-11plW pl þ v110l;

c210l ¼ -2100 þ
X

-21plW pl þ v210l;

c310l ¼ -3100 þ
X

-31plW pl þ v310l;

c410l ¼ -4100 þ
X

-41plW pl þ v410l:

In these equations, school average rates of growth are represented as grand average
rates of growth (-1100 to -4100), error terms unique across schools (v110l to v410l), and
contributions (again, more precisely in the present case, adjustment) of school char-
acteristics. This level-four model allows school average rates of growth and stability
of average growth to be estimated unconditionally (without school characteristics)
and conditionally (with adjustment for school characteristics).

All HLM analyses were performed on the PC platform of the MLwiN program
(Rasbash et al., 2000). To prepare data for HLM analyses, four data files were orig-
inally created on the PC platform of SPSS (one for each level) and then merged into
a single data file (see Rasbash et al., 2000). The MLwiN program can directly read
this merged SPSS data file for HLM analyses.
3. Results

Rates of growth were estimated for the four mathematical areas (basic skills, alge-
bra, geometry, and quantitative literacy). These rates of growth were computed in
four different ways. First, unconditional rates of growth were estimated without
any adjustment. Conditional rates of growth were then estimated with early acceler-
ation (together with initial mathematics achievement and their interaction), student
characteristics, and school characteristics sequentially and accumulatively added to
the unconditional model. A comparison between unconditional and conditional
rates of growth provided a measure of the impacts of early acceleration, student
characteristics, and school characteristics on rates of growth in the four mathemat-
ical areas. The same logic was also used for estimating stability of growth across the
four mathematical areas.

Table 1 presents unconditional annual rates of growth in and correlations of
growth among the four mathematical areas. On average, students grew annually
at about 4 points in basic skills, 8 in algebra, 6 in geometry, and 4 in quantitative
literacy. These rates of growth were all statistically significant. It is obvious from
these standardized coefficients (as measures of stability) that students grew some-
what faster in algebra and geometry than in basic skills and quantitative literacy.
However, correlations of growth were positive and substantial at both student and
school levels, indicating that the ranks of growth among students and schools were
fairly consistent across the four mathematical areas. In other words, students
(schools) who grew faster in basic skills also grew faster in algebra, geometry, and
quantitative literacy. The highest correlation was between algebra and geometry
(0.96) among students and between algebra and quantitative literacy (0.98) among



Table 1
Annual rates of growth in and correlation coefficients of growth among basic skills, algebra, geometry, and
quantitative literacy

Growth SE 1 2 3 4

1. Basic skills 3.73 0.11 0.84 0.84 0.90
2. Algebra 7.73 0.22 0.91 0.97 0.98
3. Geometry 6.21 0.21 0.90 0.96 0.94
4. Quantitative literacy 3.82 0.12 0.88 0.91 0.90

Note. All rates of growth are statistically significant at the a level of 0.05. Correlations at the student level
are presented in the lower triangle. Correlations at the school level are presented in the upper triangle.
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schools. The lowest correlation (still considerably strong) was between basic skills
and quantitative literacy (0.88) among students and between basic skills and both
algebra (0.84) and geometry (0.84) among schools.

3.1. Does early acceleration promote growth and stability of growth?

Table 2 presents the effects of early acceleration of students in mathematics on an-
nual rates of growth in and correlations of growth among the four mathematical
areas. Because mathematics achievement at the beginning of middle school during
which period early acceleration occurs may be critical, initial (Grade 7) mathematics
achievement and its interaction with early acceleration were also modeled.

The interaction between early acceleration and initial mathematics achievement
was statistically significant across all mathematical areas (note that main effects can-
not be interpreted when interaction effects are statistically significant). These signif-
icant, negative interaction effects indicated that the difference in the rate of growth
between accelerated students and non-accelerated students was significantly greater
among students with low initial mathematics achievement than students with high
initial mathematics achievement across all mathematical areas, particularly in alge-
bra. In other words, success of early acceleration of students into formal algebra
(as measured through growth in the four mathematical areas during the entire mid-
Table 2
Effects of early acceleration of students in mathematics on annual rates of growth in and correlation
coefficients of growth among basic skills, algebra, geometry, and quantitative literacy

A.
Acceleration

B.
Achievement

A · B Correlation

Effect SE Effect SE Effect SE 1 2 3 4

1. Basic skills 2.02 0.23 1.67 0.06 �1.26 0.18 0.66 0.65 0.90
2. Algebra 4.28 0.37 1.77 0.10 �2.22 0.29 0.76 0.95 0.90
3. Geometry 3.12 0.32 1.85 0.08 �1.03 0.26 0.80 0.93 0.83
4. Quantitative

literacy
1.83 0.23 1.44 0.06 �0.97 0.19 0.90 0.83 0.86

Note. All effects are statistically significant at the a level of 0.05. Correlations at the student level are
presented in the lower triangle. Correlations at the school level are presented in the upper triangle.
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dle and high school) depended on mathematics achievement at the beginning of mid-
dle school.

To examine this issue more closely, annual rates of growth were calculated in the
four mathematical areas (see Table 3), based on regression coefficients of early accel-
eration, initial mathematics achievement, and their interaction as reported in Table 2.
Overall, students who were accelerated into formal algebra at the beginning of middle
school (Grades 7 and 8) grew faster than students who were not accelerated in all
mathematical areas regardless of their mathematics achievement at the beginning
of middle school. Consider the example of algebra. Among students with high initial
mathematics achievement, accelerated ones grew at an annual rate of 12 points,
whereas non-accelerated ones grew at an annual rate of 10 points. Among students
with low initial mathematics achievement, accelerated ones grew at an annual rate
of 13 points, whereas non-accelerated ones grew at an annual rate of 8 points.

However, it is clear that students with low initial mathematics achievement ben-
efited more from early acceleration than students with high initial mathematics
achievement. Specifically, early acceleration was related to an advantage of 3 points
in annual growth in geometry regardless of initial mathematics achievement. In both
basic skills and quantitative literacy, early acceleration was related to no advantage
in annual growth among high initial achievers but an advantage of 2 points among
low initial achievers. Early acceleration was related to an advantage of 2 points in
annual growth in algebra among high initial achievers but an advantage of 5 points
among low initial achievers. Furthermore, annual growth rates of accelerated low
initial achievers certainly surpassed those of non-accelerated high initial achievers
and paled even those of accelerated high initial achievers.
Table 3
Annual rates of growth in basic skills, algebra, geometry, and quantitative literacy conditional on early
acceleration and mathematics achievement

A. Early acceleration B. Mathematics achievement (at the beginning of
middle school)

High (B = 1) Low (B = 0)

Basic skills

Accelerated (A = 1) 6.55 6.14
Not accelerated (A = 0) 5.79 4.12

Algebra

Accelerated (A = 1) 12.14 12.95
Not accelerated (A = 0) 10.08 8.31

Geometry

Accelerated (A = 1) 10.55 9.73
Not accelerated (A = 0) 8.46 6.61

Quantitative literacy

Accelerated (A = 1) 6.44 5.97
Not accelerated (A = 0) 5.58 4.14

Note. One standard deviation is used to represent mathematics achievement at the beginning of middle
school (Grade 7) with 1 denoting high achievement and 0 denoting low achievement.
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Comparing Tables 1 and 2, the range in correlation coefficients among students
was from 0.88 to 0.96 before early acceleration (Table 1) was adjusted and from
0.76 to 0.93 after early acceleration was adjusted (Table 2). The range in correlation
coefficients among schools was from 0.84 to 0.98 before early acceleration was ad-
justed and from 0.65 to 0.95 after early acceleration was adjusted. The impact of
early acceleration was greater on the stability of growth among schools than among
students, indicating that early acceleration was related to more changes in rank in
growth among schools than among students. Among both students and schools,
the relationship of basic skills to algebra and geometry was most influenced by early
acceleration. Specifically, early acceleration reduced the stability of growth between
basic skills and algebra as well as between basic skills and geometry.

Overall, changes in correlation between Tables 1 and 2 were fairly marginal. In
other words, early acceleration of students in mathematics only slightly altered the
stability of growth across the four mathematical areas with correlations remaining
strong, in particular among students. If accelerated students grew significantly faster
than non-accelerated students while correlations changed in a marginal way between
Tables 1 and 2, early acceleration ought to result in consistent upgrades in rank in
rates of growth for accelerated students across the four mathematical areas.

Finally, although early acceleration was related to consistent changes in rank in
rates of growth, standardized coefficients associated with status of early acceleration
(reported as effects) in Table 2 were different across the four mathematical areas,
indicating that the amount of addition to growth resulting from early acceleration
of students into formal algebra at the beginning of middle school was different. Obvi-
ously in Table 2, early acceleration added somewhat more growth to algebra and
geometry than to basic skills and quantitative literacy.

3.2. Do student and school characteristics affect growth and stability of growth?

Table 4 presents the effects of early acceleration of students into formal algebra on
the annual rates of growth in the four mathematical areas and correlation coefficients
Table 4
Effects of early acceleration of students in mathematics on annual rates of growth in and correlation
coefficients of growth among basic skills, algebra, geometry, and quantitative literacy, conditional on
student characteristics

A.
Acceleration

B.
Achievement

A · B Correlation

Effect SE Effect SE Effect SE 1 2 3 4

1. Basic skills 1.96 0.22 1.59 0.06 �1.22 0.18 0.70 0.68 0.91
2. Algebra 4.16 0.36 1.64 0.10 �2.14 0.29 0.76 0.94 0.91
3. Geometry 3.02 0.32 1.79 0.09 �0.98 0.25 0.79 0.92 0.84
4. Quantitative literacy 1.76 0.23 1.40 0.06 �0.95 0.18 0.90 0.82 0.85

Note. All effects are statistically significant at the a level of 0.05. Correlations at the student level are
presented in the lower triangle. Correlations at the school level are presented in the upper triangle.
Correlations are adjusted for student characteristics (gender, age, father socioeconomic status (SES),
mother SES, race-ethnicity, family structure, family size, and language spoken at home).
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of the rates of growth among the four mathematical areas conditional on student
characteristics. A comparison between Tables 2 and 4 shows that student character-
istics did not modify the stability of growth across the four mathematical areas (as
established by early acceleration) in any significant way. Some marginal changes
did occur in correlation after student characteristics were adjusted. The largest
change in correlation was 0.01 among students and 0.04 among schools. These
changes were too trivial to be taken seriously for policy or practice purposes. Over-
all, the presence of student characteristics made little difference over and above early
acceleration in terms of the stability of growth across the four mathematical areas
among both students and schools.

Similarly, student characteristics did not modify in any significant way the effects
of early acceleration on the annual rates of growth in any mathematical areas. Inter-
action effects and main effects associated with early acceleration and initial mathe-
matics achievement were fairly similar between Tables 2 and 4. Such analytical
results clearly indicated that student characteristics did not influence much the effects
of early acceleration on the annual rates of growth in any mathematical areas
(including the amount of addition to growth resulting from early acceleration used
as another measure of stability of growth across mathematical areas).

Table 5 presents the effects of early acceleration of students into formal algebra on
the annual rates of growth in the four mathematical areas and correlation coefficients
of these rates of growth among the four mathematical areas conditional on both stu-
dent and school characteristics. Correlations were almost identical at the student le-
vel and fairly similar at the school level between Tables 4 and 5. There was an
isolated case with a difference in correlation of 0.10 between basic skills and geom-
etry. The change in correlation was quite marginal even in this case. Overall, school
Table 5
Effects of early acceleration of students in mathematics on annual rates of growth in and correlation
coefficients of growth among basic skills, algebra, geometry, and quantitative literacy, conditional on
student and school characteristics

A.
Acceleration

B.
Achievement

A · B Correlation

Effect SE Effect SE Effect SE 1 2 3 4

1. Basic skills 1.99 0.22 1.58 0.06 �1.21 0.18 0.67 0.78 0.93
2. Algebra 4.19 0.36 1.64 0.10 �2.11 0.29 0.76 0.95 0.91
3. Geometry 3.02 0.32 1.77 0.08 �0.97 0.25 0.79 0.92 0.88
4. Quantitative literacy 1.78 0.23 1.39 0.06 �0.94 0.18 0.89 0.82 0.85

Note. All effects are statistically significant at the a level of 0.05. Correlations at the student level are
presented in the lower triangle. Correlations at the school level are presented in the upper triangle.
Correlations are adjusted for student characteristics (gender, age, father socioeconomic status (SES),
mother SES, race-ethnicity, family structure, family size, and language spoken at home) as well as school
contextual characteristics (school size, school location, school socioeconomic composition, school racial-
ethnic composition, grade span, student–teacher ratio, teacher education level, and teacher experience in
mathematics) and school climatic characteristics (computer-student ratio in mathematics, academic
pressure or expectation, disciplinary climate, parental involvement, principal leadership, teacher auton-
omy, teacher commitment, staff cooperation, mathematics homework, general support for mathematics,
and extracurricular activities).
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characteristics did not modify over and above student characteristics the stability of
growth across the four mathematical areas among either students or schools.

As easily seen, the effects associated with early acceleration, initial mathematics
achievement, and their interaction were extremely similar between Tables 4 and 5
across all mathematical areas. Clearly, school characteristics did not influence much
over and above student characteristics the effects of early acceleration on the annual
rates of growth in any mathematical areas.

A comparison between Tables 2 and 5 shows that student and school character-
istics together did not modify the stability of growth across the four mathematical
areas (as established by early acceleration) in any significant way either. There were
some marginal changes in correlation after student and school characteristics were
adjusted. The largest change in correlation was 0.01 among students and 0.05 among
schools (excluding the isolated case of 0.13 between basic skills and geometry at the
school level). These changes in correlation (even after counting in 0.13) were hardly
meaningful from the perspective of education policies or practices. In general, the
presence of both student and school characteristics did not make much difference
in the stability of growth across the four mathematical areas (as established by early
acceleration) among either students or schools.

Neither did student and school characteristics together modify in any significant
way the effects of early acceleration of students into formal algebra on the annual
rates of growth in the four mathematical areas. Interaction effects as well as main
effects associated with early acceleration and initial mathematics achievement were
fairly similar between Tables 2 and 5. Therefore, student and school characteristics
together did not influence much the effects of early acceleration on the annual rates
of growth in any mathematical areas (including the amount of addition to growth
resulting from early acceleration used as another measure of stability of growth
across the four mathematical areas).
4. Discussion

4.1. How much growth does early acceleration into formal algebra promote?

The analytical logic of research in the present study defines the effectiveness of
early acceleration of students into formal algebra at the beginning of middle school
according to a comparison on rates of growth in four mathematical areas (basic
skills, algebra, geometry, and quantitative literacy) during the entire middle and high
school between students who were accelerated and not accelerated. Specifically, the
rates of growth in the four mathematical areas (Table 2) were used as the baseline
data of early acceleration against which the impact of student and school character-
istics on early acceleration was studied.

Following such a logic, it was found that students with different initial mathemat-
ics achievement benefited differently from early acceleration. Low achieving students
who were accelerated into formal algebra at the beginning of middle school grew not
only faster than low achieving students who were not accelerated into formal algebra
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but also faster than high achieving students who were not accelerated into formal
algebra. As a matter of fact, the rates of growth of accelerated low achieving students
were even comparable to those of accelerated high achieving students.

Early acceleration of low achieving students into formal algebra at the beginning
of middle school appears to be a more successful case than early acceleration of high
achieving students. The advantage of early acceleration was the same between low
and high achieving students in geometry but greater among low than high achieving
students in basic skills, quantitative literacy, and particularly algebra. Recall that the
advantage of early acceleration was 3 points annually for both low and high achiev-
ing students in geometry, 2 points annually versus zero between low and high achiev-
ing students in both basic skills and quantitative literacy, and 5 versus 2 points
annually between low and high achieving students in algebra.

There might be a ‘‘ceiling’’ phenomenon in basic skills and quantitative literacy
for high achieving students. Such basic mathematical topics as number concept,
number operation, percentage, probability, data analysis, and graph reading are very
likely to have been mastered well no matter high achieving students are accelerated
or not into formal algebra at the beginning of middle school. What this argument
implies is that the lack of substantial growth in basic skills and quantitative literacy
may not be used as indicators of failure for early acceleration of high achieving stu-
dents into formal algebra at the beginning of middle school.

Relatively, algebra and geometry represent more challenging mathematical topics
and should be the focus when assessing the effectiveness of early acceleration of stu-
dents into formal algebra at the beginning of middle school. Following this logic,
early acceleration of low achieving students is particularly justified given that accel-
erated low achieving students demonstrated an equivalent rate of growth to acceler-
ated high achieving students in geometry (3 points annually) and even a faster rate of
growth than accelerated high achieving students in algebra (5 versus 2 points
annually).

It appears that early acceleration of low achieving students into formal algebra at
the beginning of middle school may be an effective strategy to improve mathematics
achievement of students in this academic category. The superior growth of acceler-
ated low achieving students across all mathematical areas to that of non-accelerated
low achieving students is very tempting to make this suggestion. Unlike high achiev-
ing students who earn few merits by growing well in basic skills and quantitative lit-
eracy (see discussion earlier), it is a great success in itself for low achieving students
to progress so well in basic skills and quantitative literacy. This means solid founda-
tions for low achieving students to pursue more advanced mathematics studies. It is
certainly an extra success (perhaps unexpected to many researchers) that low achiev-
ing students could also grow so well in algebra and geometry once they were accel-
erated into formal algebra at the beginning of middle school.

One concern about accelerating low achieving students is that the fast-pace of
learning may compromise a solid mastery of such basic mathematical topics as num-
ber concept, number operation, percentage, probability, data analysis, and graph
reading. This concern appears to be unnecessary in that accelerated low achieving
students demonstrated healthy rates of growth in both basic skills and quantitative
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literacy. Overall, early access to formal algebra did not appear to burn accelerated
low achieving students out. Instead, early acceleration of low achieving students into
formal algebra at the beginning of middle school seems to be fairly effective in pro-
moting growth across mathematical areas.

Different hypotheses can be offered to explain why early acceleration of students
into formal algebra is important to growth in mathematics achievement, especially
for low achieving students. One hypothesis can be directly framed based on the work
of Alexander (1997, 2003). The challenge of more advanced mathematical problems
that students regularly encounter in early access to formal algebra prevents boredom
and motivates them to invest more effort into the learning of mathematics. In partic-
ular, students� individual interest in mathematics is likely to rise relative to problems
that are matched well to their level of domain knowledge in mathematics (Alexander,
1997, 2003). As a result, ‘‘early access to algebra [may regulate] access both to ad-
vanced coursework and increased achievement in high school’’ (Smith, 1996,
p. 141). Analytical results of the present study demonstrate that such a challenge,
if institutionalized at the beginning of middle school, can benefit particularly low
achieving students.

4.2. Do student and school characteristics moderate effects of early acceleration?

Overall, the conclusion from comparing Tables 4 and 5 with Table 2 is that stu-
dent and school characteristics did not make much difference in the rates of growth
in any of the four mathematical areas. With fairly similar interaction effects and
main effects across Tables 2, 4, and 5, advantages of early acceleration that low
achieving students demonstrated were hardly influenced by student and school char-
acteristics. This conclusion is a particularly important endorsement for accelerating
low achieving students because analytical results indicate that the advantages in the
rates of growth of low achieving students who were accelerated into formal algebra
at the beginning of middle school were not related to individual differences and
school effects. Stated differently, once low achieving students were accelerated into
formal algebra at the beginning of middle school, they tended to grow equally well
regardless of their individual, family, and school characteristics. This evidence sug-
gests that all low achieving students have the same potential to take advantage of
early acceleration into formal algebra at the beginning of middle school.

4.3. Does early acceleration into formal algebra promote stability of growth?

The present study used correlations among rates of growth in four mathematical
areas as a measure of stability (or consistency) of growth across mathematical areas.
The analytical logic of research is that unconditional correlations of rates of growth
among students and schools (Table 1) were used as the base line data against which
conditional correlations adjusted for the effects of early acceleration of students into
formal algebra at the beginning of middle school were compared. Table 1 clearly
indicates that there was considerable stability of growth across the four mathemat-
ical areas among both students and schools, with most correlations above 0.90.
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Students who grew faster in one mathematical area also grew faster in other math-
ematical areas. Recall that correlation as a measure of stability indicates the consis-
tency in rank rather than amount of growth. Therefore, students� ranks or positions
in rates of growth were fairly consistent across the four mathematical areas.

After early acceleration of students into formal algebra at the beginning of middle
school was considered, correlations in Table 2 were similar to those in Table 1. The
largest changes in correlation between Tables 2 and 1 are 0.15 among students and
0.19 among schools. Most changes in correlation are well below 0.10. Obviously,
even the largest correlations of 0.15 (at the student level) and 0.19 (at the school le-
vel) fall somewhat short of being practically meaningful. Early acceleration of stu-
dents into formal algebra at the beginning of middle school did not break down
the stability of growth across mathematical areas (as seen in Table 1). Recall that
accelerated students grew faster than non-accelerated students regardless of their ini-
tial mathematics achievement (see Table 3). Consistent correlations under such a
condition imply clearly that accelerated students upgraded their ranks in growth
in the same way simultaneously across all mathematical areas. In this sense, early
acceleration of students into formal algebra at the beginning of middle school did
promote stability of growth across mathematical areas.

The present study also used standardized coefficients associated with status of
early acceleration across four mathematical areas as another measure of stability
of growth across mathematical areas, with the analytical logic of research remaining
the same. Overall, although early acceleration of students into formal algebra at the
beginning of middle school was found to be related with consistent changes in rank
in rates of growth, standardized coefficients indicate that the amount of addition to
growth resulting from early acceleration varied somewhat. Early acceleration added
somewhat more growth to algebra and geometry than to basic skills and quantitative
literacy.

4.4. Do student and school characteristics moderate stability of growth?

The analytical logic of research in the present study is that correlations of rates of
growth across mathematical areas among students and schools with adjustment for
early acceleration of students into formal algebra at the beginning of middle school
were used as the base line data (see Table 2) against which correlations further ad-
justed for the effects of student and school characteristics were compared. A compar-
ison of Tables 4 and 5 to Table 2 shows that student and school characteristics did
not make much difference in stability of growth across mathematical areas. The larg-
est change in correlation between Tables 2 and 5 was 0.01 among students and 0.05
among schools. Even the largest, isolated correlation of 0.13 (at the school level) fall
short of being practically important. Therefore, the upgrading in rank in terms of
rates of growth of accelerated students (consistent across mathematical areas as dis-
cussed earlier) was not much influenced by student and school characteristics.

Finally, standardized coefficients associated with status of early acceleration (used
as another measure of stability of growth across the four mathematical areas) were
quite similar across Tables 2, 4, and 5. These findings indicate that student and
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school characteristics together did not influence much the amount of addition to
growth resulting from early acceleration of students into formal algebra at the begin-
ning of middle school. Specifically, the phenomenon that early acceleration added
somewhat more growth to algebra and geometry than to basic skills and quantitative
literacy was not much influenced by student and school characteristics.

4.5. Limitations of the study

Secondary data analysis often inherits limitations of original data. The LSAY
data have good measures of school characteristics in terms of school context
(including teacher characteristics) and school climate. These measures were used
in the present study to adjust for school effects. However, the LSAY data do
not have adequate measures on school curricular and instructional characteristics
under which students make progress in mathematics. As a result, the present study
could not take into account how well formal algebra was taught to accelerated stu-
dents. Such a lack emphasizes that findings in the present study mark only the
beginning of a comprehensive investigation into the issue of early acceleration of
students in mathematics.

With a four-level structure, HLM models in the present study were already con-
siderably complex. Coupled with a relatively small sample size in the LSAY, some
more advanced data analyses could not be performed. For example, it would be
insightful if higher order trends in growth could be explored to identify, say, whether
students who were accelerated into formal algebra tended to experience a rapid
growth in middle school and then a slow growth in high school. Further studies
may seek more efficient statistical models or larger longitudinal samples to explore
higher order trends.

Nevertheless, as a starting point along this line of research, the present study
has offered important theoretical and practical insights. Specifically, early acceler-
ation of low achieving students into formal algebra may be an effective strategy to
improve mathematics achievement, and all low achieving students may have equal
potentials to take advantage of early acceleration into formal algebra regardless of
their individual, family, and school characteristics. Early acceleration may also
maintain stability of growth across mathematical areas, and this stability may
not depend on student and school characteristics. With certain limitations, the
present study is also an invitation for more refined and advanced research on early
acceleration of students in mathematics as it relates to their cognitive
development.
Appendix A. Description of school climate variables

A.1. Computer-student ratio in mathematics

This variable measures how many students in a school share one computer that
has been allocated especially for mathematics instruction.
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A.2. Academic press

This equally weighted, aggregated measure (from the teacher level to the school
level) includes items that describe teachers� impressions of a school�s academic envi-
ronment: (a) the learning environment in this school is not conductive to school
achievement for most students; (b) staff members maintain high standards of perfor-
mance; (c) most students in this school work up to their ability; (d) the teachers in
this school push the students pretty hard in their academic subjects; and (e) in this
school, there is really very little a teacher can do to insure that all of his/her students
achieve at a high level (1, disagree strongly; 2, disagree somewhat; 3, disagree; 4,
agree; 5, agree somewhat; 6, agree strongly).

A.3. Disciplinary climate

This equally weighted, aggregated measure (from the teacher level to the school
level) includes items that ask teachers to describe the extent to which each of the fol-
lowing is a problem in their school: (a) students absenteeism from class; (b) robbery,
theft, or vandalism; (c) student use of drugs or alcohol; (d) fighting or assault; and (e)
verbal abuse of teachers (1, serious; 2, moderate; 3, minor; 4, none).

A.4. Parental involvement

Parents are asked to indicate whether, during this school year, they have done any
volunteer work in their children�s school. Parents� responses are aggregated to the
school level. This aggregated response has been standardized with a mean of zero
and a standard deviation of one. Parental involvement, therefore, measures parent
volunteer work for school in the current study.

A.5. Principal leadership

This equally weighted, aggregated measure (from the teacher level to the school
level) includes items that register teachers� opinions about their principals: (a) the
principal deals effectively with pressures from outside the school that might interfere
with my teaching; (b) the principal sets priorities, makes plans, and sees that they are
carried out; (c) staff are involved in making decisions that affect them; (d) the school
administration�s behavior toward the staff is supportive and encouraging; (e) the
principal seldom consults with staff members before he/she makes decisions that af-
fect us; (f) goals and priorities for the school are clear; and (g) the principal lets staff
know what is expected of them (1, disagree strongly; 2, disagree somewhat; 3, dis-
agree; 4, agree; 5, agree somewhat; 6, agree strongly).

A.6. Teacher autonomy

This variable is the sum of equally weighted school aggregates (from the teacher
level to the school level) of two composite measures. The first component includes
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items that ask teachers about how much influence they have in their school over pol-
icy in each of the following areas: (a) determining student behavior codes, (b) deter-
mining the content of in-service programs, (c) setting policy on grouping students in
classes by ability, and (d) establishing the school curriculum (1, none; 2, minor; 3,
some; 4, moderate; 5, much; 6, a great deal).

The second component includes items that ask teachers about how much control
they feel they have in their classroom over each of the following areas of planning
and teaching: (a) selecting textbooks and other instructional materials; (b) selecting
content, topics, and skills to be taught; (c) selecting teaching techniques; (d) disci-
pline students; and (e) determining the amount of homework to be assigned (1, none;
2, minor control; 3, some control; 4, moderate control; 5, much control; 6, complete
control).

A.7. Teacher commitment

This equally weighted, aggregated measure (from the teacher level to the school
level) includes items that measure teachers� attitudes toward their profession: (a)
there is a great deal of cooperative effort among staff; (b) I usually look forward
to each working day at this school; (c) I sometimes feel it is a waste of time to try
to do my best as a teacher; (d) I am familiar with the content and specific goals of
the courses taught by other teachers in my department (1, disagree strongly; 2, dis-
agree somewhat; 3, disagree; 4, agree; 5, agree somewhat; 6, agree strongly).

A.8. Mathematics homework

Teachers are asked to indicate how many hours of mathematics homework they
assign to students in a typical week. An aggregate is created to measure the average
hours of mathematics homework that teachers in a school assign to their students in
a typical week, used as a continuous variable.

A.9. General support for mathematics

This equally weighted, aggregated measure (from the teacher level to the school
level) includes items that register teachers� perceptions on the extent to which each
of the following is a problem in their school: (a) some teachers are inadequately
trained to teach mathematics, (b) lack of teacher planning time, (c) class sizes too
large, (d) students with different abilities and interests taking the same mathematics
classes, (e) too little coordination or articulation between classes in the mathematics
curriculum, and (f) too few advanced mathematics courses in the curriculum (1, seri-
ous; 2, moderate; 3, minor; 4, none).

A.10. Extracurricular activities

This is a measure that taps how many extracurricular activities that a school offers
to their students: (a) science club, (b) mathematics club, (c) computer club, (d) jets,
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and (e) engineering/technology club. For example, the dummy variable, science club,
is coded as 1 if schools offer a science club, 0 if schools do not. A total score is cal-
culated that sums over the 5 items for each school.
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